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I. Phys.: Condens. Matter 6 (1994) 7889-7908. Printed in the UK 

Gauge-invariant quantum kinetic equations for electrons in 
classical electromagnetic fields 
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Raymond and Beverly Seckler Faculty of Exact Sciences, School of Physics and Astronomy. 
Tel Aviv University, Tel Aviv 69978, Israel 

Received 8 July 1994 

Abstract Gauge-invariant quantum kinetic equations far interacting electrons are deduced using 
the Keldysh diagrammatic technique. The Dyson equations are transformed using a special type 
of the Wigner representation that produces gauge-invariant Green functions. As a result. they 
depend on the variables having a meaning of position and kinetic momentum. The Wigner 
representation used makes it necessary to modify the diagrammatic technique in such B way 
that it will be able to account for the momentum-energy exchange between the system and 
the electromagnetic field. The formalism obtained makes it possible to cany out many-panicle 
calculations for non-linear systems in arbitrary electromagnetic fields. Some particular simple 
cases m considered. A special discussion is given regarding the meaning of the detailed balance 
in such a formulation. 

1. Introduction 

The kinetic equation, which plays the central role in non-equilibrium statistical mechanics, 
was derived by Boltzmann in 1872. Most of the theoretical analysis of transport processes 
in condensed matter has been based on this equation, whose validity depends on several 
assumptions. First, one assumes that the duration of a collision is much shorter than 
the mean-free time of the particle between collisions. The particles can be considered as 
being free between collisions that are well defined events in space and time. Second, the 
distribution function of the particles in phase space is assumed not to change during a 
time interval Af that is much shorter than the mean-free time and much longer than the 
collision duration. This condition ensures that the rate of the distribution function variation 
depends only on its instantaneous value and not on its previous evolution. Third, in order 
that this rate at a given spatial point depends only on its value at this point, we assume 
that the distribution function does not change appreciably within the space volume crossed 
by the particle during the time interval At. Fourth is the assumption of molecular chaos. 
Correlations between the particles are neglected, and one assumes that a single-particle 
dishibution function describes the system adequately so that no multi-particle distribution 
functions are needed to compute the collision integral. 

When quantum effects are involved and the above assumptions are not met it is generally 
not possible to use the Boltzmann equation. It is then desirable to use another method that 
is applicable even when the above assumptions do not hold. A possible approach to the 
problem can be based on the quantum kinetic equations, which we discuss here within the 
framework of the Keldysh diagrammatic technique. 

Quantum kinetic processes are in many cases treated by means of the Kubo (1957) 
linear response method. An alternative approach, based on the Keldysh (1965) diagrammatic 
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technique, enables one to go rather easily beyond the linear approximation response. It has 
been shown that the difference of the Dyson equations and their conjugate produce, after 
some transformations, the Boltzmann equation in the classical limit. Hence one can hope to 
obtain quantum kinetic equations just by changing the variables of the two Dyson equations 
to Wigner variables. 

The first to formulate kinetic equations, based on the real-time Green function technique, 
were Kadanoff and Baym (1962). Fleurov and Kozlov (1978) (see also Al'tshuler 1978) 
using the Keldysh formulation deduced two sets of linearized quantum kinetic equations, 
which may in principle give an exhaustive description of the dynamic and kinetic properties 
of a system of interacting Fermi particles. Since then, a number of papers were published on 
quantum kinetic equations. see for example, Tugushev and Fleurov (1983), Mahan (1987), 
Reizer and Sergeev (1987), Khan et al (1987), Reggiani et al (1987), Davies and Wilkins 
(1988), Bertoncini er al (1989), Rammer and Smith (1986). Garanin and Lutovinov (1992), 
and Gutter er a1 (1993) and references therein. However, the present formulation of the 
quantum kinetic equation still has some limitations. The technique in its present status 
cannot describe systems in an electromagnetic field with strong spatial or time dependencies. 
So far, the kinetic equations have heen formulated almost exclusively for systems in static 
electromagnetic fields. One of the central problems is that in many cases these equations 
are written for quantities that are not explicitly gauge invariant. 

Here we propose a derivation of the quantum kinetic equations for arbitrary classical 
electromagnetic fields and emphasize in particular its gauge-invariant form (section 2). Static 
and homogeneous fields and plane waves are considered as examples. The conventional 
Keldysh diagrammatic technique is modified in order to include the effects that the external 
fields have on the particle as it propagates in space and interacts with other particles 
(section 3). The meaning of the detailed balance in the quantum formulation will be 
considered in section 4. The derivation and some properties of macroscopic equations 
derived on the basis of the microscopic quantum kinetic equations is discussed in section 5. 
A short summary will be given in section 6. 
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2. Derivation of the kinetic equations 

The diagrammatic technique proposed by Keldysh (1965) allows one to write the 
Dyson equation for a non-equilibrium quantum system in an arbitrary non-quantized 
electromagnetic field. A semiclassical Boltzmann equation, as well as its quantum versions, 
is obtained from this Dyson equation by making certain transformations and approximations. 
In the derivation to be presented below it is our aim to arrive at a quantum equation, avoiding 
approximations as much as possible. In this sense the validity of the equations to be obtained 
is equivalent to that of the Dyson equations. 

Our point of departure is the Dyson equation 

G , ' ( x ) G ( x , x ' )  = S4(x - x')ux + d4xI&(x, x l ) G ( x l ,  x ' )  (1) J 
written in differential form with the Green functions defined by Keldysh (1965) as 

(2) 

Here T and ?. stand for the operators-of the chronological and antichronological ordering, 
ux is the Pauli matrix, x = (cf ,  T ) ,  + (x )  is the field operator of the elementary excitations 
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in the system and the angular brackets denote the averaging over the equilibrium statistic 
ensemble that is supposed to exist before the extemal fields and the interactions have been 
turned on. 

It is often more convenient to use another representation for the Green function matrix 

which is obtained from the matrix (2) by a linear transformation, also proposed by Keldysh 
(1965). 

The differential operator 

in the left-hand side of (1) is defined in such, a way as to obey 
&-I @)Go@. x')  = u ~ S ( X  - x ' )  

where Go is the matrix Green function for the system with all the interactions off but with 
the extemal electromagnetic A(x) field on. The differential operator (4) is written for non- 
relativistic electrons with parabolic band dispersion. Here ui becomes U: if one chooses the 
representation (2) or 0; in the representation (3). 

The Dyson equation (1) contains all the information necessary for describing kinetic 
properties of the system. However, it should be first transformed into a more convenient 
form. One gains improved physical insight and a better possibility of comparison with the 
solutions of classical and semiclassical equations when introducing the Wigner variables 
X = (cT. R) = (x  + x ' ) / 2  and y = (x' - x ) .  These variables imply the distribution 
functions will depend on the spatial coordinate R at time T .  The Fourier transform 

G(P,  X) = d4ye-"ih)Y''P~LC(y, X) (5)  s 
with respect to the variable y is usually made. Although this transform (5 )  seems to be 
quite obvious it possesses the important drawback of producing quantities that are not 
gauge invariant. The resulting conjugate variable P = ( E ,  P) does not necessarily have the 
meaning of the kinetic 4-momentum. 

As a result, it is rather problematic to ascribe certain physical meaning to the 
resulting equations and to quantities appearing in them. Mahan (1987, 1990) while 
deriving the kinetic equation overcomes this problem by introducing an artificial coordinate 
mnsformation applied in addition to the Fourier transform in order to recover a gauge- 
invariant form of the equations. This additional transformation was found using physical 
intuition, and should be made anew for each gauge. This problem can become particularly 
difficult when dealing with non-homogeneous fields in non-linear problems. 

Fleurov and Kozlov (1978) applied a transform of the form 

G(P,  x) = d4ye-(i/h)y"(P,'-A,.(X))G(Y, x) (6) s 
which produces explicitly gauge-invariant quantities and equations in the linear approxi- 
mation or in a non-linear case but for a static homogeneous electric field (Tugushev and 
Fleurov 1983). Here A"(x) = (&), A(x)) is the 4-vector potential of the applied elec- 
tromagnetic field. 
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The aim of this paper is to propose an explicitly gauge-invariant procedure that holds 
for an arbitrary classical electromagnetic field. This can be achieved by making use of the 
transform 

The phase factors generated by the wavefunctions 

+(x) + +(x)e(iefic)Au) (8) 

A p ( x )  + - a p A ( x )  (9) 

under the local gauge transformation 

defined by means of an arbitrary real function A@), are cancelled by the integral in the 
exponent of (7) and the Green function G(P,  X )  remains unchanged. In the definition (7) 
the integration path is taken as a straight line between the points X - y / 2  and X + y/2. 
Different choices of this path will lead to different meanings of P and to changing the 
form of the quantum kinetic equations. If one chooses the variables P to be the kinetic 
momentum of the particles the straight line between the points X - y / 2  and X + y / 2 ,  (Vasak 
etal 1987, Eke et a1 1986 and Serimaa er a1 1986) must be chosen as the integration path. 
This certainly produces a restriction on the topology of the electromagnetic field. However, 
we are not going to address here the problem of spaces that are not simply connected, and 
the latter choice of the path will be used throughout. 

The Wigner quasi-distribution function (see, for example, Hillery ef a1 1984) can be 
defined as f (P, X )  = -iG“(P, X )  where G<(P, X )  is obtained from the Green function 
GC(y, X )  by means of the transform (7). Macroscopic quantities of the system can be 
calculated by means of this function. Hence, in most of the problems one is interested 
in, one needs quantum kinetic equations to obtain the Wigner quasidistribntion function 

These quantum kinetic equations i re  obtained according to the following procedure. 
(i) The sum and the difference of the Dyson equations (1) and their Hermitian conjugate 

(ii) The integral in the transform (7) is represented as 

f (P, X I .  

are formed. 

/” d4ye-(’lhP?[. . .] + d4(p’ - p)e ( i /h)(P‘-P)x / d4xd4x’e”)(Px-P‘x‘)[. . .I. s 
a;($/ y p A , ( X  + s y ) d r  = - A A ( X  - 1y)  + y” 

(10) 

(iii) Integrating by parts and using the equalities 

-112 T 112 

ds( i  - s)FA,(X +sy) (11) 
-112 

and 
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The equations are expressed in terms of the electromagnetic tensor 

The notation a; = a/ax” is used throughout this paper and we write the differential variable 
as the superscript of the a or V symbols. 

F,,(x) = aiA,(x) - a:A,(x). 

(iv) Use is made of the two formal equalities 

F*JX + sy) = e”y“xFA,(x) (13) 

so that the variable y does not appear explicitly in the equations. 

side of the equations. 
(v) Finally, the integration with respect to the variable s is carried out in the left-hand 

This fivescep procedure leads to two matrix equations of the form 

- --(vf h2 + ~jo(fA)FA,(X)aPp 
4m 

I 

(x’ - x)KA,(x + s(x’ - x))ds) 
0 

I 

(x‘ - x)”A,(x + s(x’ -x))ds) 
0 

x J d 4 n ~ ( u ~ ~ ( x , x l ) G ( x l , x ‘ )  - G(x,xl)~(xl ,x‘)ux)  
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where j&) = sin(x)/x and jl ( x )  = sin(x)/x* -cos(x)/x; the derivative with respect to X 
in the operator A =hapax  acts only on the electromagnetic tensor F,.. These equations 
are equivalent to the Dyson equations and they give a correct physical description for kinetic 
processes of a many-particle system in a r b i q  electromagnetic fields. We wrote two matrix 
equations which would correspond to six equations for complex functions. However, the 
number of really independent functions, and hence independent equations, is only two (see, 
for example, the discussion in Fleurov and Kozlov 1978). One can, for example, take an 
off-diagonal term in the matrix equation (15) in the representation (3) which would be an 
equation for, say, the retarded Green function G' determining the spectrum of the system. 
The second equation can be produced from one of the diagonal terms of the matrix equation 
(16) (in the same representation) and this is the equation for the function GK, which in the 
semiclassical approximation converts into the conventional Boltzmann equation. 

It is interesting to look at some particular forms of the equations that are obtained for 
a given dependence of the electromagnetic fields on the coordinates. 

TI. Static and homogeneousfeldr 

Here a simple case is considered when only static and homogeneous electric andlor 
magnetic fields are applied. All derivatives of the electromagnetic tensor with respect 
to the coordinates then vanish. One can easily verify for this case that 

M Levanda and V Fleurov 

j d i A F A +  = FkIL j l ( fA)F~ ,  = 0 

so that equations (15) and (16) become 

m 
x V p  + eEa')]G(P. X) 

For static and homogeneous fields the integral of the potential in the transform (7) simplifies 
and the whole transform converts into the transform (6). The previously cited papers on 
quantum kinetic equations were mainly concerned with static and homogeneous fields, hence 
methods for the evaluation of the right-hand side of these equations can be found in those 
papers. They all use the so-called gradient expansion (Kadanoff and Baym 1962) which 
appeared to be useful when treating the problem in the linear approximation or in the case 
of a static homogeneous electric field. 

Sometimes the non-gauge-invariant Fourier transform (5 )  is used. Then the Green 
functions are expanded in Taylor series with respect to the variable X, which produces 
a series of derivatives of the Green functions (Rammet and Smith 1986). An additional 
transformation is necessary in this case in order to eliminate the gauge non-invariant terms 
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(Mahan 1990) appearing on the left-hand side. The latter step can be avoided by using 
the transform (6), which is gauge invariant for static homogeneous fields (Fleurov and 
Kozlov 1978, Tugushev and Fleurov 1983). 

The second set of equations (18) has a structure similar to that of the Boltzmann equation, 
which usually is represented in the form 

a P 
aT m 
- f + - -Vxf  + F . V p  f = lC011 

where F is the force acting on the particle. In the quantum kinetic equation it corresponds 
to the Lorentz force F = eE + e ( P / m )  x B. The one-particle distribution function is 
connected with the Green function by the relation 

f ( P ,  T, R) = -i dEG‘(E, P ,  T ,  R) = -( 1 - iTr / dEG(E, P ,  T, R)) .  

The Boltzmann equation (19) has been obtained by integrating the trace of equation (18) 
over the energy variable E. 

The additional term in the quantum equation comes from the energy variable E in the 
Wigner quasi-distribution, Indeed, the first set of equations (17), in its linearized form, was 
used in the papers referred to above to find an equation for the retarded Green function, G‘, 
while the second set of equations (18) was used to find the Keldysh Green function, GK. 
In the homogeneous and time-independent fields, the linear approximation produces 

1 1 2 

G‘ = (E - Ep - Er),-’ 

and 

where A = -21m G‘, r = -21m C‘, q = E - E ~  - Re C‘ and n(&) is the Fermi distribution 
function (Fleurov and Kozlov 1978). It should be noted that the left-hand side of the last 
equation, which is in fact the quantum analogue of the Boltzmann equation, contains terms 
that have been transferred from the right-hand side of (18). These are the so-called non-local 
terms. 

2.2. Plane electromagnetic wave 

We consider here electromagnetic fields whose dependence on the coordinates is assumed 
to be represented as 

F ~ , ( x )  = eiKXFAp(K). 

The following equality can then be easily obtained: 

j o ( $ A ) F k , ( X ) a P p G ( P ,  X )  = ( fLKP) - ’F~ , (X) [G(P  + $ k K ,  X) - G ( P  - $ K ,  X)] 
G ( f L K y F A p ( x ) D ( P ,  x, K) 

j ] ( $ A ) F , , ( X ) a P ’ ” G ( P ,  X )  = -2(kK”)-’Fk,(X) 

x + [ G ( P  - ; E < ,  X) + G(P + i h K ,  X)l ( 
- r d s G ( P  - shK,  X )  ( k K @ ) - ’ F A , ( X ) 2 ( P .  X ,  K ) .  

-112 
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The last lines of both these equalities are definitions of the functions D(P, X, K) and 
2 ( P ,  X, K ) .  We also define the wavelength vectbr 

X = A/& = (KO-', IC;', KT' ,  KC')  

A4 Levamfa and V Fleurov 

and write the equality 

(K")-'FA,(X) = (A. E(X),XoE(X) +X x B ( X ) ) .  

Substituting all these in (15) and (16) one obtains the quantum kinetic equations for 
electrons in the plane electromagnetic wave: 

-Z('")@oaE(X)+XXB(X)).[~-ihVx+ffrK]D(P,X,K) m 2c 

- L(k)2(X~E(X) m 2c +X x B(X))~(D*(P, X, K) + z2(p, x ,  K)) 

and 

e x ' + x  . = d4(xJ - x )  exp - x ) @ [ p ,  - ; A , ( ~ ) i o ( ~ K ( x '  - X I ) ]  1 
x ( S d 4 ~ l ( u ~ e ~ x , x , ) G ( x ~ , x f )  - & x , x ~ ) ~ ( x ~ , x ' ) u ~ )  1 . (21) 

In the limit of large wavelengths and low frequencies ( K  + 0) one finds that 

2 ( P ,  X, K )  -+ 0 XoD(P, X, K) + chFG(P,  X) 

and 

XD(P, X, K )  + hVpG(P,  X). 

Therefore, these equations convert into the kinetic equations for static and homogeneous 
fields (17) and (18). These quantum kinetic equations for a system under the plane 
electromagnetic wave were derived in a systematic way, taking care of their explicit gauge 
invariance. In the next subsection we will use these equations in order to consider the 
problem of linear response in such a system. 
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2.3. Linear response 

The linear response of a system to an external perturbation is usually calculated along the 
lines of the Kuho (1957) formalism. According to Kubo the linear response is given in terms 
of correlation functions, which are calculated for equilibrium quantities. If the calculation 
of the correlation functions is done by means of a diagrammatic technique, the lines in the 
diagrams correspond to equilibrium Green functions. The linear response can be also found 
using the quantum kinetic equations (15) and (16). 

The impulse response, &P’(x, x‘, xI), of the system to the external electromagnetic field 
will be considered. The Green functions of the system can be written 

(22) 

where G ( x .  x’)lp=o are the Green functions of the system when no electromagnetic field is 
applied. It is possible to define the frequency response of the system, &’(x, x ‘ ,  K ) ,  as the 
Fourier transform of k’’’(x, x’ ,  xl) with respect to the coordinate X I .  The Green function 
of the system can then be written in terms of the Fourier coefficients of the external field 

J G ( x , x ’ )  = G ( x , x ’ ) l  F=O + Rph(~,~’,~,)Fllh(~i)d4~i 

G ( x  , x ‘ )  = G ( x ,  x ’ )  I F=o + 1 f i P A ( x ,  x ‘ ,  K)F,2(K)d4K. (23) 

This gives rise to the following question: what sort of Fourier transform should be used 
in order to write this equation in the Wigner representation? The functions G ( . ~ . x ’ ) I ~ = ~  
should be transformed by means of (5) since it corresponds to the system without external 
fields. The transform (7) contains a dependence on the external electromagnetic fields and 
if one uses it to transform H p A ( x ,  x’ ,  K )  the outcome will depend on the external fields as 
well. The response of the system should not depend on the external fields, and we conclude 
that one should use the transform (5). However, we emphasize that this is not the case 
for the terms that depend explicitly on the electromagnetic potentials, G ; ’ ( x ) G ( x .  x ’ ) ,  and 
usually appear in the kinetic equation. 

The Green function of the system can be written in the linear approximation 

G ( P ,  X) = G ( P *  X)I,=, + J Ap*(P, X, K)F,*(K)d4K. 

G(P,x)Ip=o = G(P)IF=o 

i q x ,  x’, X I )  = i”A(y. x - X I )  

(24) 

If the system without the external fields is static and homogeneous, i.e. 

then one immediately realizes that 

and 

f i @ ( ~ ,  X, K )  = A@(P, K )  exp(iKX). 

To find equations for the plane-wave response, one should substitute (24) in (20) and 
(21), take Fa(K’) o( S(K’ - K) and leave only the terms linear in the external field. 
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Keeping in mind that G ( P ,  X)/,=, = G(P)(F=o one arrives at the following equations: 

M Levanda and V Fleurov 

eP ( mc 
+ eX. E ( X )  - -. &oWX) +X x B(X)))Z(P, K)I,=, 

- 5 (g) (XoE(X) +X x B ( X ) )  . f f iKD(P ,  K)l,-o 

+ - - @ o E ( X ) + X x B ( X ) )  m 2c . @ K ) / s G ( P  +fsAK)I,=,ds 
8 ie 

= &P - K / 2 ) ~ F = o w ( P ,  K )  + B”*(P, K)&P + K/2)lF,UX 

O;bL”(P, K)&P f K/2)lF,o f G ( P  - K/2)),,6”*((P, KfGz (3) 
and 

( m  h ,  
-Eo - -P . K &*(P, K )  

P ( mc + ie x . E(X) + -. 6 0 ~ ~ )  +X x B ( x ) ) ) D ( P ,  K)I,=, 

= CTS(P - K/Z)l,=,B’”P, K )  - B’”P, K)%P + K/2)1F,ouz 

- -!(I) m 2c (xoE(X) +A x B(X)) . h K Z ( P ,  K)IPA 

+ U&@(P, K)G( P + K/2)IF=o - G ( P  - K/2)1,=,AP*(P, K b , .  (26) 
Here S%‘(P, X. K )  represents the line? response of the mass operator e ( P ,  X). This can 
be connected with the linear response, H@(P, X, K ) ,  of the Green function using the Ward 
identity. The latter, after the transform (5), takes the form 

&@*(P, X, K )  = -- (27) 

where L(P, X ,  PO, XO) is the himatrix, representing the aggregate of all irreducible skeleton 
diagrams. 

It seem to he instructive here to discuss briefly the case of an alternating electric field 
when K = ( o / c ,  0). Then (75) and (26) become 

L(P,  X, Po, XO)&*(PO, XO, K)d4Xod4Po 
2 ss 

(.-. - ;)&W. K) =ox&(& - 4 2 ,  P)lF=oB@(P, 0 , O )  

~”‘(P,0. o)k(E -!- W / 2 ,  P)lF,Gx 

+Gxf2”*((P, 0, o ) G ( & + W / 2 ,  p)lF=o +e(& - W / 2 ,  P)[,_,b”’((P, 0, o}Ux 

(28) 
and 

- fioH&’(~, K )  + iefiEVpB(P)I F=O 
P I  + - - ( & E f h o / 2 C , P ) \ F A  m o  - -fi0/2C, p)\,=,) 

= ~ ~ ~ ( & - 0 / 2 , P ) j , , H ” ’ ( P , W , O )  - E i P ( ( P , o , 0 ) % ( E + W / 2 ,  P)lF=oUx 

+O;b”’(P,o, O ) B ( & + W / 2 ,  P~(,~o-~(E--o/2,P)~r~ob~~P,0,0)~~. 
(29) 
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This result is compared with~the equations obtained in Wu and Mahan (1984) (see 
also Mahan 1987) where quantum kinetic equations for non-static but homogeneous fields 
are considered. Contrary to the derivation presented here they use the representation 
corresponding to the transform (5). It leads to quantities that are not explicitly gauge 
invariant, and one has to take special care for the gauge invariance of the final results. As 
a result our equations (28) and (29) differ in some details from the corresponding equations 
of Mahan (1987) (equations (77), (78), (82)). The term (I  - 8u) should be substituted 
by Sa and the term proportional to V p  is missing. It is important, however, to note that 
these differences have fortunately not influenced the results of the calculations presented in 
this paper, since the corresponding integrals have appeared to be zero. It seems that using 
an explicitly gaugeinvariant equation could have saved the necessity of considering these 
terms at all. 

Equations (25) and (26) give an exhaustive description of the linear response for 
systems of interacting particles. The function L(P, PO) can be calculated by means of 
a diagrammatic technique and the equations obtained for fiwA(P, K) are integral equations. 
These equations offer an alternative method to the Kubo formalism for calculating the linear 
response. 

3. Diagrammatic techniques 

The right-hand side of the quantum kinetic equations (15) and (16) contains the mass 
operator k ( x , x ’ ) ,  which within the Keldysh formulation is obtained by means of a 
diagrammatic technique. The problem lies in the fact that this formulation assumes 
Green functions and other quantities to be in the (x ,x’)  representation while the equations 
deduced above use Fourier transformed functions, i.e. the Wigner representation, (P. X). 
Coordinate and time homogeneity is now absent and the momentum-energy conservation 
in an individual vertex is violated. Moreover, the transform (7). producing gauge-invariant 
functions, involves the potential of the electromagnetic field. As a result, the standard 
formulation of the Keldysh diagrammatic technique is to be correspondingly modified in 
order to describe non-equilibrium systems in the electromagnetic fields in gauge-invanant 
form. This modified formulation is described below. 

3.1. Diagrammatic expansion 

As mentioned above, the difficulties in formulating the diagrammatic technique are due 
to the inhomogeneity of the system and the inclusion of the electromagnetic field in the 
gauge-invariant Green function 

G ( p ,  p’) = /d4xd4r’ exp[(i/k)(px - p’x’)] 

which depends now on two variables p and p‘ due to the lack of momentum-energy 
conservation. The second function that it is necessary to introduce can be,called the 
phase-loop function. It appears for every electronic loop in the diagram and describes 
the momentum+nergy transfer between the electron propagating in the loop and the 
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electromagnetic field. The phase-loop function that corresponds to an electronic loop with 
N vertices is defined by the equation 

M ( T  I N ,  F W )  = M((ri1Ll I F(X)) 

M Levanda and V Fleurov 

where 

and yk = X ~ + I  - Xk, xk = (xy+t + xi)/2 with cyclic conditions X N + ~  = X I  being assumed. 
The phase-loop function depends on N variables [ r j ]~ l ,  on the electromagnetic field F ( X )  
and is explicitly gaugeinvariant. Applying the transform (9) does not affect the phase- 
loop function since the line integral in (32) is taken along a closed trajectory (the number 
of electrons is conserved). The gaugeinvariance can be seen more transparently if one 
transforms the line integral, C J ( [ X ~ ] ~ ~ ) ,  into integrals of differential forms which depend 
explicitly on the electromagnetic field rather than on the vector potential (see, for example, 
Eguchi et al 1980). 

The gauge-invariant Wigner representation G ( P ,  X), which we actually need, is 
connected with the Green function defined in (30) by means of the equation 

&P, X) = d4(p‘ - p)e(i/h)(p’-J’)xG(p, p’) .  (33) s 
However, we use the functions (30) since for these the perturbation series can be represented 
in diagrammatic form. It can be constructed just by substituting the standard Keldysh 
diagrammatic expansion of G(x ,  x’) in  the definition of G ( p ,  p’). Such an expansion will 
contain all the interactions existing in the system including, first of all, electron-electron 
and electron-phonon interactions. Each Green function in the expansion (G(xi ,  xj) for 
electrons, D(xi, xj) for phonons, and so on, with xi and xj corresponding to the vertices 
of the diagram) is then expressed via the Green function that depends on two momenta 
(C(pk, p i )  for electrons, D ( p r ,  p i )  for phonons, and so on, where k enumerates the electron 
lines of the diagram). The exponential functions containing the field can be collected in 
groups forming phase-loop functions M ( x  I N ,  F(X)) (to be discussed below). As a result 
one can formulate the rules for the diagrammatic expansion of the function G ( p ,  p‘ ) .  

As we know, the Keldysh diagrams are constructed according to the conventional 
Feynman rules with the only difference being that each Green function becomes a matrix 
of the functions. The electromagnetic field introduces some additional features, which are 
outlined below. 

(i) Each line of the diagram stands for the corresponding Green function matrix: 
G ( p ,  p’) for electrons, D ( q ,  4‘) for phonons, etc. Hence each internal line is labelled 
by two momenta, meaning that the momentum is not conserved between the interactions. 

(ii) A function M ( x  I N ,  F(X)) is attached to each closed electron loop and to the two 
free ends of each diagram. Each variable nj corresponds to a vertex in the closed electron 
loop or in the electron line connecting the two free ends of the diagram. 

(iii) The energy and momentum conservation is maintained if the 4-momentum of the 
electromagnetic field is accounted for. It means that the sum of all 4-momenta entering the 
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Figure 1. An example of a Keldysh diagram. The verdces are denoted by xi 

Figure 2. An example of a diagram in the double momentum space that corresponds to the 
Keldysh diagram in figure 1. The momentum of the Green functions are written n e a  the venices 
as well JS the field momenta, xi. 

vertex minus the sum of all momenta leaving the vertex should equal the corresponding 
electromagnetic 4-momentum ni. 

All the other rules coincide with those of the conventional Keldysh formulation. 
Figure 1 shows an example~of a Keldysh diagram for a Green function G(x, x’ )  while 

figure 2 shows the corresponding diagram for G ( p ,  p’) .  The full lines and curves in these 
figures represent electron Green functions, and the broken lines and curves stand for boson- 
type excitations (e.g. phonons) which are usually chargeless. Every vertex i in the diagram 
for G(x, x’ )  (figure 1) is characterized by the coordinate (x , )  and its location on the time 
contour (+ or -). As for the vertex in the diagram for G ( p ,  p‘) (figure 2), it is characterized 
by its location on the time contour (+ or -), by the momentum (ni) transferred by the field 
and by the momenta of all the Green functions entering (p!)  or leaving ( p i )  it. 

The phase-loop functions Mz and MI are attached to the electron loop and to the two 
free ends of the diagram (figure 2). The function MI exists in every electron diagram 
regardless of whether the diagram contains electron loops or not. As for the function Mz. 
it is attached to the electron loop. Additional functions of this sort would have appeared if 
the diagram had contained more electron loops. It should be emphasized that in order to 
have a non-trivial contribution the loop should contain more than one pair of vertices. That 
is why there is the bosonic line D(qz,4;) in figure 2. 

If a diagram without such a bosonic line were considered when the electron loop had 
only one pair of vertices, the phase-loop function would become 

(34) Mz(ns, n712, F ( X ) )  = 8(JE$(j77). 
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It means that no exchange of momenta between the electrons and the field takes place, and 
the phase-loop function can be discarded. 

M Levanda and V Fleurov 

3.2. The phase-loop function 

Let us take a closer look at the phase-loop function. Using the equalities (13) and (14), this 
can be written in the form 

with cyclic conditions x ~ + j  = i ~ 1  being assumed. This form of the phase-loop function 
is gauge invariant, and does not change under the transformation (9). It also shows in a 
relatively simple way how the field interferes with momentum conservation at the vertices. 
Derivatives of the delta function mean that derivatives of the Green functions and of the 
vertex functions appear in the analytical expressions for the diagrams. Hence momentum 
conservation is maintained not only between the Green functions themselves, but also 
between them and their derivatives. Physically, it  corresponds to the fact that only the 
momentum of the whole system is conserved, which includes both the momenta of the 
quasi-particles and that of the electromagnetic field. 

The line integral vanishes when no field is applied or if the loop consists only of two 
vertices (see the example in the previous subsection); the phaseloop function then becomes 
just a product of delta functions 

In this case momentum conservation is maintained without the electromagnetic field and 
the phase-loop function can be discarded. 

In the case of a plane wave, A p ( X )  = A,(O)exp(iKX), the expression for M ( z  I 
N ,  F ( X ) )  becomes 

Taking the limit of long wavelength and neglecting the spatial dependence of the field, 
K = (@,IC, 0), one arrives at the limit of alternating electric field and the 4-potential can be 
taken as A = (q,  0). One then finds that the phase-loop function is just a product of delta 
functions (36), showing that the field does not participate in the momentum conservation. It 
also means that the interactions are not influenced by the field. The same result is obtained 
for static and homogeneous fields (the limit K + 0), and for very weak fields (the limit 
A 4 0). More generally, one may say that the phase-loop function takes its trivial shape 
(36) for any conservative electric field (V x E  = 0) and/or static and homogeneous magnetic 
field. 
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4. Principle of detailed balance 

The principle of the detailed balancing of the processes that occur in the system by their 
reverse processes can be applied (Dirac 1924) to formulate general conditions for the system 
in statistical equilibrium. It is clear that the condition of detailed balance is much stronger 
than just nullification of the collision integral. The detailed balance for the linearized 
quantum kinetic equation was discussed by Fleurov and Kozlov (1978), who showed how 
the detailed balance followed from the properties of the Keldysh diagrams. This section will 
discuss the detailed balance for the collision integral of the more general quantum kinetic 
equation (16), which is valid for any classical electromagnetic field. Actually the aim is to 
find the necessary conditions that the Green function must obey in order that the collision 
integral becomes zero. 

Following from (16), the quantum collision integral is 

Loii(p2 X) = 1 d& Dc0ii(J‘, XI. (38) 

Here 

’ Dco1,(p, X) = __  d4(p’ - p)e(’fi)(P’-P)X d4xd4x’e(i/’’)(PX-P’~‘) 
2 ‘ J  J 

I 

(x‘  - x)’A,(x + s(x‘ - x))ds)d,,~~(x, x’)  

0 

and 

(39) 

The expression in square brackets in (41) is transformed into the double-momentum 
representation (p, p’) and expanded diagrammatically as explained in the previous section. 
The resulting diagrams can be arranged into pairs. One just has to take any pair 
of expressions from a line in  the square brackets in (41), say EC(x,xl)GC(xl,x‘) and 
G C ( x , x ~ ) C C ( x l , x ’ ) ,  or G > ( x , x [ ) C < ( x ~ , x ’ )  and S ’ ( x , x ~ ) C ~ ( x l , x ’ ) .  For each such pair 
a diagram of a certain order and topology is drawn. Then one can easily see that two such 
diagrams in each pair differ from each other only by the directions of the arrows in the 
lines. It means that such a pair of diagrams represents the same elementq process reversed 
in time. 

Detailed balance exists in the system when each process is balanced by its time- 
reversed counterpart. Hence we shall look for the conditions under which the two analytical 
expressions of the diagrams in the pair cancel each other (figure 3). 

When the mows in the diagram are reversed, two changes in the corresponding 
analytical expression occur. First, each time-directed Green function (C<, C’, D c ,  D’ 
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/ \ 

/ \ 
/ \ 

Figure 3. An example of a pair of diagrams that represent processes in opposite directions in 
time. 

and so on) changes to the opposite one (G>, GC, D>, Dc and so on). Second, momenta 
in the delta functions standing for momentum conservation at each vertex, are permuted, 
p~ i+ p; (qx i+ q; for phonons and so on) where k enumerates the Green functions. No 
changes happen in the phase-loop functions. Therefore one can conclude that a sufficient 
condition for the system to be detailed balanced is that all the time-directed Green functions 
of the system obey the relation 

G<(P,  P‘) = -G>(-P’. -P)  (4W 

for fermions and 

D Y q ,  4’) = D>(-q‘, -4) (4 1 b) 

for bosons. 
As an example, we can look at the simple case of a system in equilibrium with no 

electromagnetic fields applied. In this case we can specify the Green functions completely. 
The function M(T I N, F(X)) is now just a product of delta functions. Assuming now 
that the momentum is conserved in each elementary process one can show that each pair 
of diagrams cancel each other if the condition 

G’(P) = -exp(P”c,)G<(P) (42) 

for fermions and 

P ( P )  = exp(Ppc,)DC(P) (43) 

for bosons holds. Here c is a constant 4-vector. If one substitutes GC, G’ for G’, G< in the 
analytical expressions for the diagrams, the exponentials exp(P@c,) make products equal 
to unity. It reflects the energy-momentum conservation in the system. The two expressions 
for the two diagrams of a pair are then equal. 
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Combining the two conditions one finds that the Green functions have the form 

G’(P) = -in(Pc,)A(P) (44) 

D’(P) = iN(P’c,)B(P). (45) 

and 

This structure resembles the equations for the equilibrium Green functions since n and N are 
Fermi and Bose functions respectively. However, no conditions on the spectral functions 
A(P) and E ( P )  are imposed and they can be non-equilibrium. 

A physical example of such a situation is the well known phonon drag effect proposed 
by Peierls (see, for example, Ziman 1960). The Green functions (44) and (45) correspond 
to a system moving as a whole with momentum c (a current flow) and having an effective 
inverse temperature 0 = CO. However, if the momentum is not conserved (if there are 
impurities in the system, the phonon subsystem is kept at equilibrium, or U processes are of 
importance) the system momentum c must relax to zero and the effective temperature will 
become equal to the bath temperature, CO = B. Then we arrive at the conditions considered 
in Fleurov and Kozlov (1978). 

We now address the same issue from another point of view. Generally, if the processes 
in the system are detailed balanced the collisions do not change the density matrix of the 
system. One can then say that the entropy of the system is at its maximum value. As is 
well known (see, for example, Alhassid and Levin 1979 and references therein) the entropy 
of the system at the maximum is 

s = C O +  C”C, 

p = exp(-c 0 - C”?J 

and its density matrix is given by 

where C, are mean values of linearly independent but not necessarily commuting 
observables, e,, of the system; c, are constants that are determined by the conditions 
1 = Tr(p) and C, = Tr(pe,). The constants c, give an indication of the amount of 
information the mean values C ,  supply about the density matrix. If we have no knowledge 
about the mean value of an observable then this constant vanishes. For electrons we have 
only four possible observables: the three components of the momentum and the energy. 
The relation between the density operator and the electron Green function GC is given by 
the Wigner transformation. As a result, we see that the same dependence of these two 
quantities on the observables was obtained from maximum entropy considerations and from 
vanishing of the collision integral. 

5. Equations for macroscopic quantities 

The quantum kinetic equations provide us with the possibility of calculating Green functions. 
The latter, however, are not directly measurable; they are only used at certain steps of 
the calculations. The Green functions are quasi-distribution functions and macroscopic 
measurable quantities are calculated as their averages over the phase space. Although it is 
possible to deduce various equations for the macroscopic measurable quantities from the 
quantum kinetic equations, we shall consider only the two most important equations. It is 
shown in this section that all the Green functions that solve the quantum kinetic equations 
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result in macroscopic quantities that satisfy the particle continuity equation and the quantum 
mechanical equivalent of the classical Hamilton-Jacobi equation. 

Macroscopic measurable quantities can be written in terms of space conditional 
moments. Hence, we start by defining the space conditional moments p " , ( X )  as the means 
of (PJ" for given X .  These can be obtained from the equation 

M Levanda and V Fleurov 

- 

where 

p ( X )  = -i/d4PG'(P,X) 

is the macroscopic particle density. Integrating the quantum kinetic equations with respect 
to the momenta, and using the equality (14), the two quantum kinetic equations become 
equations for space conditional moments. 

The first equation we want to discuss is obtained from the trace of equation (16): 

J (47) 
a 

- -p(X) + V X ( p ( X ) b / m )  = aT d P I d P ,  X I .  

This electron density continuity equation (47) contains in its right-hand side the collision 
integral integrated over the momentum space. It stands for the transfer of electrons from 
and to a four-dimensional volume element, at X ,  caused by the collision processes. 

One can readily see that the integral in the right-hand side of (47) is zero for any 
homogeneous system. This property is directly connected with the conservation of electron 
number in all the interaction processes. The integral is not necessarily zero for the case of 
inhomogeneous systems, which reflects local fluctuations of the electron number caused by 
scattering processes. However, we may consider the case when the inhomogeneity is weak 
on the scale of the free path length and time, If. The Green function and the mass operator 
can then be assumed to be approximately homogeneous : 

G(x,  x')  E G ( ~ x  - x ' I )  + O(l/lin) (48) 

and 

C ( X . X ' )  2 X(lX --X'I)+O(l/li") (49) 

on the scale li,, which we assume to be larger than the mean free path and time, i f .  Using 
the fact that the integral converges on the scale If << li,, the approximations (48) and (49) 
make the right-hand side of (47) vanish, i.e. 

/ d P I d P ,  X )  = drlTr[uiiC(X, XI)G(XI, X) - GW,  XI)X(XI, X)uil Z 0. (50) s 
We emphasize that this integral would not vanish if the inhomogeneity were strong on the 
scale of the free path length andor time. The above coarse-graining procedure is then not 
applicable. 

The conservation of total charge in the system can be seen after integrating (47) over 
the three-dimensional space, (compare, for example, Mahan 1987, Rammer 1991 and Green 
et al 1985). The corresponding integral is then exactly zero, regardless of the scale of the 
inhomogeneity. 
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Similarly one can multiply (16) by P or P 2 / 2 m  and integrate it. Then equations for 

The second equation is obtained from the G C  component of (15): 
the momntum and energy conservations are derived (Kadanoff and Baym 1962). 

where 

- GC(X.xi)Ec(xi. X) - GC(X,xi)C'(~i, X)] 

Equation (51) is compared with the quantum mechanical equivalent of the classical 
Hamilton-Jacobi equation (see, for example, Moyal 1949, equation (A4.5)). The time 
derivative of the Hamilton principal function is just the energy variable and the Hamilton 
principal function does not appear explicitly in the equation: &nt(X) then gives a correction 
to the energy of the particle due to the interactions between the particles as a functional of 
the Green functions. In order to bring &(X) to a more friendly form, we shall write it 
(using the representation (2)) as a sum of two terms: 

- - (sdrlTr[u,elx.x,)G(xl.X) +G(X, x ~ ) % x ~ , X ) u ~ l  

s 1 
Einr(X) = - 

4 P G )  

+ drlTr[o;i%(X, XI)G(XI,  X) - G(X, x ~ ) ~ ( x ~ , X ) u ~ l  . (52) 

The first term in the right-hand side of (52) is real since it is equal to its complex conjugate. 
This term can be represented as a sum of all unlinked connected skeleton diagrams that 
at equilibrium produce the interaction-induced variation of the ground-state energy (for 
example, Nozikres 1964). Now we have a similar way to calculate this correction for 
systems that are not at equilibrium. 

The second term is imaginary and is related to the fact that the local energy is not well 
defined due to the scattering processes. The structure of this term is similar to the integral in 
the right-hand side of (47) and it has the same properties: its integral over the whole space 
is zero, applying the coarse-graining procedure also makes it zero. It can be of importance 
only for strongly inhomogeneous systems. Using the same approach as in section 4 one 
can also show that this term is exactly zero for the detailed balanced systems. 

6. Summary 

Our aim in this study was to deduce quantum kinetic equations for interacting electrons 
written in terms of the momenta and the configuration coordinates in a gauge-invariant 
form for non-quantized arbitrary electromagnetic fields. This is achieved by making 
a transformation to the Wigner coordinates which includes the 4-potential of the 
electromagnetic field. As a result, the conventional Keldysh diagrams are to be reformulated 
and new phase-loop functions are introduced in order to account for the momentum and 
energy exchange between the electrons and the field. This phase-loop function becomes 
trivial for conservative electric fields and static homogeneous magnetic fields. However, 
the formulation obtained here in its general form allows one to treat inhomogeneous and 
non-linear problems. 
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